Semi-supervised Clustering of Graph Objects: A Subgraph Mining Approach
نویسندگان
چکیده
Semi-supervised clustering has recently received a lot of attention in the literature, which aims to improve the clustering performance with limited supervision. Most existing semi-supervised clustering studies assume that the data is represented in a vector space, e.g., text and relational data. When the data objects have complex structures, e.g., proteins and chemical compounds, those semi-supervised clustering methods are not directly applicable to clustering such graph objects. In this paper, we study the problem of semi-supervised clustering of data objects which are represented as graphs. The supervision information is in the form of pairwise constraints of must-links and cannot-links. As there is no predefined feature set for the graph objects, we propose to use discriminative subgraph patterns as the features. We design an objective function which incorporates the constraints to guide the subgraph feature mining and selection process. We derive an upper bound of the objective function based on which, a branch-and-bound algorithm is proposed to speedup subgraph mining. We also introduce a redundancy measure into the feature selection process in order to reduce the redundancy in the feature set. When the graph objects are represented in the vector space of the discriminative subgraph features, we use semi-supervised kernel K-means to cluster all graph objects. Experimental results on real-world protein datasets demonstrate that the constraint information can effectively guide the feature selection and clustering process and achieve satisfactory clustering performance.
منابع مشابه
Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering
Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملA Semi-Supervised Clustering Method Based on Graph Contraction and Spectral Graph Theory
Semi-supervised learning is a machine learning framework where learning from data is conducted by utilizing a small amount of labeled data as well as a large amount of unlabeled data (Chapelle et al., 2006). It has been intensively studied in data mining and machine learning communities recently. One of the reasons is that, it can alleviate the time-consuming effort to collect “ground truth” la...
متن کامل